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A Coupled Creep Plasticity Model 
for Residual Stress Relaxation of a 
Shot-peened Nickel-based Superalloy 
DeDDis J. Buch"""", Reji JoIm, Roher! A. Brockman, and Andre .. H. Rooenherger 

Shot pe~ning is a commonly us~ 
surfac~ tmatment proc~ss that imparts 
compressiv~ ruidual sms~s into the 
surfac~ ofmetal CotnpoMnts. Compns
si~ n!sidual stTes~s Tr!tard initiation 
and growth of fatig~ cracTr.r. During 
compcment loading history, shot-peened 
residual stresses may change due to ther
mal exposure, creep. and cyclic loading. 
In these instances, taking fuU credit for 
compressive residual stresses would re
sult in a rwnccmservative life prediction. 
This article describes a methodical ap
proach for characterizing and modeling 
residual stress relaxation lIIUkr elevat
ed temperature loading, near and above 
the monotonic yield strength of JN1OO. 
The model incorporates the dominant 
creep deformation mechanism, coupling 
between the creep and plasticity models, 
and effects of prior plastic strain to sim
ulate surface tTeatmenJ deformation. 

INTRODUCTION 

Compressive residual stresses :retard 
crack initiation and growth, resulting in 
improved fatigue performance. NUIDef
OU8 studiesl- 7 on steels. titanium, and 
nickel-based supera1loys have shown 
that residual. stresses generated via sur
face treatment relax when subjected to 
elevated temperature exposure or me
chaoi<:aI loading. A variety of sophis
ticated empirical models have been de
veloped and shown to capture trends in 
residual. stress rel.axation.!.4.7 However, 
material microstructure. hardeJrlng be
havior, plastic strain, and the underly
ing physical deformation _ 
responsible for stress relaxation are not 

incorporated into many of these mod
els. The result is a relaxation model that 
must be rcca1ib:ratcd for each surface 
treatment process and associated con
trol parameters. Selecting a relaxation 
model that refiects the proper deforma-
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tion mechanism provides for reliable 
pmlictions that rely less on calibration 
and fine-tuning of model parameters for 
each application. 

CREEP DEFORMATION 
IIECHANISIIS AND IIODELS 

The primary variablos associated 
with creep deformation and creep rate 
are stress, temperature, and time. Much 
of the early work charactcrizing creep 
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thai bJcorporoWI both the ilsilial 
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bd.re ~m1loyl IUllMT eUvatd 
~mtIlre loading conditiOIl8. 
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behavior was aimed at fitting empirical 
equations as a function of stress, tem
peraIme, and time. Furthermore, it is 
typi.caIly assumed that these equations 
are products separable into functions for 
stress and temperature. 

A major element missing from the 
empirical creep models is the evolution 
of material microstrucntre with time 
or deformation histoIy. It is almost al
ways assumed that microstructure, and 
hence the material properties remain 
UDclJangcd throughout the deformation 
bistoty. Aspects of material microsttuc
ntre such as grain size, dislocation struc
ture, inclusions, vacancies, etc., all have 
an impact on the deformation rate. Both 
timo-hardeJrlng and sttain-hardeJrlng 
approaches are suitable if the creep rate 
is dominated by a single deformation 
mcdlanism. If multiple deformation 
mc:chanisms are active, or the dominant 
mc:chanism changes with thcrmal. and 
mrcbSDicalloading history, simple time
and strain-hardening approaches fail to 

capture the loading response. Schoeck' 
presents a more general formulation 
for creep rate that accounts for multiple 
independent creep mechanisms which 
addresses the evolution of a changing 
microstructure as a contributing factor 
to the creep rate, but implies the defor
mation mechanisms are independent. 

Numerous models have been devel
oped for the dominnnt creep mecha
nisms such as glide and climb of dis
locations, and diffusion through grains 
and along grain boundaries. Nowick 
and Machlin9 and WeertmanlO devel
oped the early dislocation creep models 
to describe climb and glide deformation 
mechanisms which gave rise to many of 
the commonly used exponential and hy
perbolic sine formulations for creep rate. 
The interaction or competition between 
deformation mechanisms can become 
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of shot-peened components. 
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Thermal relaxation stodies on shot
peened steels,' titanium alloys,' and 
nickel alloys'-'S" have demonstrated 
that relaxation of residual stresses may 
occur at relatively low temperatures and 
over short durations. Research into re
laxation of residual stresses subject to 
mechanical loading has followed a much 
different path than thermal relaxation. 
For thermal relaxation, temperature and 
exposure time are the primary param
eters, while for mechanical relaxation 
the important factors are temperature, 
maximum and minimum applied stress, 
loading frequency, hold time, waveform 
shape, and number of applied cycles. 

ToIaI 51rain (m'm) 

complex. Initial approaches to represent 
material degradation under creep load
ing include the continuum damage me
chanics (CDM) approaches of Kacha
nov" and Rabotoov12 that incorporate a 
single damage parameter and associated 
evolution equation. More recently, the 
simple damage parameters in the CDM 
approach have been replaced by spe
cific degradation models representing 
mechanisms such as cavity nucleation 
and growth, subgrain coarsening, mul
tiplication of mobile dislocations, and 
thermally and environmentally driven 
mechanisms. I3-19 

A number of modeling approaches 
have been developed to account for the 
combined contributions of plasticity 
and creep.'3-I>,2O-l4 The trend has been 
to incorporate plasticity and creep into 
a single unified inelastic model. These 
models have evolved to include com
plex noulinear hardening rules to cap
ture the Bauscbinger effect, and cyclic 
hardening or softening. Unfortunately, 
the microstructural deformation mecha
nisms behind creep and plastic deforma
tion, which are fundamentally different, 
have been combined in this approach. 

RELAXATION OF 
SHOT·PEENED RESIDUAL 

STRESSES 

Shot peening has been employed for 
decades to impart compressive residual 
surface stresses for retardation of crack 
initiation and crack growth. Numerous 
studies have characterized the ben
eficial effects of compressive residual 
surface stresses on fatigue life for me
tallic materials. '-

7 For applications that 
utilize aluntinum and titanium alloys, 
subjected to moderate temperatures and 
stresses, residual stresses are assumed 
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to be stahle with repeated cyclic stress
controlled loading. In contrast, nickel
base superalloys are typically selected 
for applications where temperatures 
may reach 80 percent of the melting 
temperature, and stresses approach or 
exceed the monotonic yield strength. At 
elevated temperatures and high stress 
loading conditions, inelastic deforma
tion will alter the original residual stress 
depth profile. Furthermore, changes to 
the microstructure resulting from shot 
peening, long term elevated temperature 
exposure, and deformation history may 
accelerate the relaxation rate of residual 
stresses. Understanding the relaxation 

See the sidebar for experimental de
tails. 

COUPLED CREEP
PLASTICITY MODEL 

The constitutive model developed in 
this study is based on a rate-independent 
plasticity model, and a strain-hardening 
creep model that is coupled to the plas
ticity model through the plastic strain 
rate and yield surface size. The plas
ticity model is based on the von Mises 

EXPERIMENTAL INVESTIGATION 

IN100 is a powder metal (PM) nickel-based superalloy with ao average grain size of 
approximately 25 JUD. The microstructure is composed of a continuous gamma (1) ma
trix, and precipitate cubical gamma prime (y'). The cubical gamma prime is responsible 
for the excellent creep resistance of this alloy. The gamma prime is stroog and ductile 
which limits dislocation interaction and movement through the microstructure. Addi
tional details about the baseline microstructure are described in the literature." 

The effect of room-temperature plastic prcstrain on creep deformation behavior is 
showo in Figure 1 for ao applied stress of 1,000 MPa and temperature of 6SCJ'C. This fig
ure is a plot of total strain rate versus total strain for the entire elevated temperature load
ing history. The effect of room-temperature prestrain, which is used to simulate surface 
treatment, clearly affects the elastic, plastic, aod creep response at elevated temperature. 
The zero percent prcstrain case is the baseline case for comparison. 1bc defonnation his
tory starts by elastic loading at a constant strain rate of 1.0 x 10-' Is follawed by yielding, 
which produces plastic deformation and ao increase in the total strain rate until reacbing 
the target stress, after which the strain rate drops off during primary creep defonna
tion. The creep strain rate reaches a minimum and then increases traositioning to tertiary 
creep. The one percent prestrain case exhibits delayed yielding resulting from an increase 
in the yield surface during room-temperature prestrain loading. The minus one percent 
prestrain loading exhibits alawer tensile yield resulting from the Bauscbinger effect aod 
supports the need to include a plasticity mudel with kinematic hardening. Also, the in
crease in strain rate is more gradual for the compressive prestrain, which is consistent 
with the more gradual hardening curve often observed in cyclic hardening. Only for the 
five percent prestrain case is yielding mitigated upon loading to 1,000 MPa. The data 
also show that any prestrain, tensile or compressive, results in a decrease in the minimum 
strain rate. The open diamond symbols represent the initial loading strain, aod clearly 
reflect the complex deformation that occurs prior to reacbing the target stress for creep. 

www.tms.org/Jom.html JOM • January 2010 
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effective stress with a nonlinear mixed 
isotropic-kinematic hardening rule as 
described by Dodds." The creep model 
follows the physics-based modeling 
of dominant deformation mechanisms 
similar to the approaches of Dyson, 
McLean, and others.!"" Based on the 
scanning electron microscopy (SEM) 
and transmission electron microscopy 
(rEM) observations of the shot-peened 
and thermally exposed microstructure, 
it has been argued that the microstruc
ture remains stable over the range of 
temperatures and exposure times in 
this stndy. Therefore a microstructural 
model dominated by a single deforma
tion mechanism is sufficient to model 
residual stress relaxation behavior. The 
elastic-plastic-creep model is cast in 
an implicit integration form suitable 
as a standard user material subrou
tine (UMAn for implementation into 
ABAQUSIStandard. 

Identification of the primary creep 
deformation mechanism is required 
before development of a model may 
begin. One approach to determining 
the dominant mechanism is to fit the 
minimum creep rate versus stress data 
to a power law equation and evaluate 
the exponent of stress (n). Bulk diffu
sion through the grain (Nabarro-Her
ring Creep) and diffusion along grain 
boundaties (Coble Creep) may be char
acterized by minimum creep rates that 
are directly proportioual to stress raised 
to an exponent n = I. Dislocation creep 
mechanisms typically have a power law 
exponent that is bigher and with a range 
of n = 3-{i. The creep rate data from 
this stndy exhibit an exponent of n '" 6, 
and therefore dislocation creep motion 
is the primary deformation mechanism 
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for the range of conditions evaluated. 
Therefore, a creep model with disloca
tion creep as the dominant deformation 
mechanism is chosen for this alloy and 
range of operating conditions. 

The development of the creep model 
follows the microstructorally based 
deformation mechanism approach of 
McLean and Dyson." The basic model 
is adapted to incorporate the effects of 
prior plastic strain and coupling to the 
plasticity model. The 10 effective creep 
strain rate relation, based on disloca
tion creep as the dominant deformation 
mechanism, is defined such that it is 
identical to the axial component under 
uniaxial loading, 

e' =Eo(l+ilOn)Sinh(cr-a) (I) 
cr,K 

where 

£c = effective creep strain rate, 

Eo = creep strain rate parameter, 

£"'" = effective mobile dislocation 
density, 

cr = applied stress, 

0.00 0.05 0.10 
Depth (rnm) 

www.tms_orgIJom.html 

a = back stress, 

cr, = normalized stress parameter 
(nondimensioual), 

K = size of yield surface. 

The microstructural evolution equation 
for multiplication of mobile dislocations 
has been modified to incorporate the ef
fect of plastic strain rate as follows: 

edm = ME' + NE' (2) 

Parameters M and N are coefficients 
that determine the contributions of 
plastic strain rate and creep rate toward 
the increase in dislocation mobility, 
respectively. This is a strain-induced 
form of damage that increases with in
creasing strain rate. In the absence of 
plastic strain, Equation 2 reduces to the 
creep damage rate equation described 
by McLean and Dyson.!' Details of the 
constitutive equations and solution pro
cedure are described elsewhere.Z7)8 

VALIDATION OF MODEL 

The coupled creep-plasticity model 
has been calibrated using creep data 
with prior plastic strain as described in 
the Experimental Investigation section. 
A one dimensional model of the con
stitutive equation has been developed 
as an expedient method tu determine 
the constitutive parameters and associ
ated confidence limits. The parameters 
deduced from tensile, creep, and cyclic 
tests fit tu the one-dimensioual form of 
the coupled creep-plasticity model have 
been implemented into a three-dimen
sional finite element material model. 

Overall, the coupled creep-plasticity 
model captures the effects of prior plas
tic strain, plastic strain during loading, 

30 

25 

20 
~ 

15 ~ 
10 ~ 
5 

o 
0.15 

FlQure 3. Composile of 
baseline residual stress 
and cold work depth 
profiles overlaid on shot
peened microstructure. 
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tic strain) depth profiles deterntined by 
XRD . 
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Although the volume of deformed 
material is small, the presence of the re
sidual stresses is sufficient to affect the 
deformation response in the test speci
mens. Validation of the model with 
residual stresses is shown in the stress 
versus strain response of Figure 4. The 
figure shows the experimental data and 
model predictions, respectively, from 
an unpeened cylindrical doghone speci
men and a shot-peened flat doghone 
specimen. The model captures the lower 
yield point in the shot-peened specimen 
that is observed in the experimental re
sults. Note that these are avemge stress
es throughout the specimen. Thus, devi
ation from the unpeened sample shows 
that yielding occurs at the interior of the 
shot-peened sample which started at a 
tensile residual stress. The results de
scribe the effect of residual stress on the 
deformation response of the test speci
mens. Further validation of the coupled 
creep plasticity model is accomplished 
by comparing the measured retained re
sidual stress depth profile after loading 
with model predictions. 

200 

• Shot Peened - data 

- Unpeened - model 
Figure 4. Effect of shot
peened restdual stresses 
on yteldlng In IN100 at 900 - - Shot Peened - model 
MPa and 650°C In vlrgtn and 
shot-peened samples. 

0.002 0.004 0.006 
True Strain (rr.'m) 

and applied stress level on the creep 
defonnation response. For example, 
Figure 2 incorporates both room-tem
perature plastic prestrain (Ep = I %) 
and plastic strain dnriog elevated-tem
perature loading to the target stress of 
(J = 1,000 MPa. The model captures the 
delayed yielding dnriog loading result
ing from the increase in the yield sur
face from room-temperature prestrain 
loading and the sharp increase in strain 
mte associated with yielding under 
stress-<:ontrolled loading. Furthermore, 
the creep response including the mini
mum creep rate is accumtely captured 
by the model. 

APPLICATION OF MODEL 

The proposed coupled creep-plastic
ity model has been shown to be capable 
of reproducing material responses over 
complex loading histories in which in
elastic prestrain affects the subsequent 
creep behavior mther dmmatically. This 
section considers the analysis of relax
ation of shot-peened residual stresses in 
INlOO subjected to mechanical loading. 
Model predictions corresponding to re
sidual stress relaxation of shot-peened 
dogbone specimens are presented to 
demonstrate the effectiveness of the 
proposed coupled model for problems 
involving sharp spatial gradients, such 
as those encountered in shot-peened 
components. 

After identifying limiting factors 
such as material availability, size of test 
matrix, and experimental and analyti
cal requirements, a doghone specimen 
with a rectangular cross section (2 mm 
thick X 10 mm wide) was chosen for 
the shot-peening geometry. A large flat 
shot-peened surface is desired to maxi-
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0.008 0.010 

mize the size of the irradiated region 
dnriog x-ray diffraction (XRD). Based 
on residual stress depth profiles on a 
similar superalloy, IN7l8,' and typical 
shot-peening specifications for turbine 
engine components, an Almen intensity 
of 6A has been selected. The residual 
stress measurements were collected at 
the surface and at nominal depths of 
0.012,0.025,0.050,0.075,0.125,0.175, 
0.250, and 0.350 mm. Characterization 
of the initial residual stress and plastic 
strain depth profiles are necessary for 
accurate prediction of the evolution of 
stresses and plastic strains under applied 
thermal and mechanical loading. Figure 
3 is a backscatter SEM microgmph of 
a polished cross section of IN1OO. The 
left side of the image is the shot-peened 
surface of the sample. The left 50 IUD 
area shows a distinct change in micro
structure resulting from the shot-peen
ing-induced defonnation. The right side 
shows the interior, with a typical repre
sentation of the microstructure and in
dividual grains. Superimposed over the 
microstructure are representative resid
ual stress and percent cold work (plas-

Prediction for retained residual 
stresses for a single mechanical load
ing cycle is shown in Figure 5. The 
maximum applied stress of 900 MPa 
results in yielding during loading. The 
room-temperature (RT) baseline re
sidual stress profile is an average of six 
profiles. This is the residual stress pro
file used as the initial conditions in the 
finite element model. Three specimens, 
tested under these loading conditions, 
are avemged and shown as a solid line 
representing the mean response with 
error bars displaying the range of the 
XRD measurements for the axial resid-

500~~~~~~~~~~~~' 
Load-Unload (3 sec), amax = 900MPa, 650°C 

i 
.1-500 

1-1,000 

-1,500 

-RT Baseline (±3a) 
(6 RS profiles) 

-XRD Data (±3a) 
(3 RS profiles) 

- - Prediction 

Figure 5. Prediction for re
tained residual stresses 
in shot-peened dogbone 
specimen from single load-
unloed cycle in IN100 at 

-2,000 .... ~~--.!.~~~-'-~~.....Jc......~~--' 900 MPa and 650°C. 
0.00 O. to 0.20 0.30 0.40 

Depth (rr.'m) 
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0.10 0.20 0.30 0.40 
Dspth (m/m) 

ual stress profile. The range in the XRD 
measurements is greatest in the region 
where the residual stress profile has the 
largest value of compressive residual 
stress. This is expected since the errors 
in depth measurement, and stress cor
rection for material removal, are great
est in the shallow depth region. The pre
diction for the residual stress profiles, 
shown as a thick dotted line without 
symbols, captures the residual stress 
relaxation trend. Surprisingly, the data 
displays a small tensile surface residual 
stress. It has been demonstrated in the 
literature" that gross plastic straining of 
the entire cross section of a shot-peened 
test specimen can reverse the residual 
stress profile such that tensile residual 
stresses develop on the surface with 
compression in the center. 

Prediction for the retained residual 
stresses under sustained load (creep) 
loading, for 10 hours, is shown in Figure 
6. The prediction captures the surface 
residual stress and peak compressive 
stress. Sustained loading is more det
rimental than the load-unload cycle to 
retained compressive residual stresses 
for applied stresses that develop plas
tic strain during loading. Furthermore, 
sustained loading continues to relax 
residual stresses with increasing creep 
time. 

Although significant relaxation of 
compressive residual stresses occurs 
during creep relative to that of the load
unload cycle, the surface residual stress 
remains compressive. This is relatively 
surprising since aualysis of the creep 
strain data for the 10 hour creep test re
vealed that the specimen was in tertiary 
creep and close to failure when the test 
was stopped. 

Vol. 62 NO.1. JOM 

CONCLUSIONS 

A coupled creep-plasticity model that 
incorpomtes plastic strain and yield sur
face state variables has been developed 
that reflects the correct dominant defor
mation mechanism identified for relax
ation of shot-peened residual stresses 
in this alloy. The coupled creep-plastic
ity approach facilitates incorporation of 
other creep deformation mechanisms 
into the model without additioual ex
tensive experimental testing and cali
bration. Although the applied loading 
conditions were intentionally chosen 
to promote yielding and thermal relax
ation for this study, a significant por
tion of the origiual compressive surface 
residual remains after loading to retard 
initiation and growth of fatigue cracks. 
The model has been validated and shown 
to capture the complex deformation his
tory with prior room-tempemture pre
strain. The model successfully captured 
the effects of residual stress on defor
mation history and the retaiued residual 
stress profile for different loading histo
ries. 
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